
Changes from 2013 NRL Plasma Formulary to the
2016 NRL Plasma Formulary

⊲ p. 32

from

= 6.8× 10−8
µ′1/2

µ

(

1 +
µ′

µ

)−1/2

T−3/2

to

= 6.8× 10−8
µ′1/2

µ

(

1 +
µ′

µ

)

T−3/2

⊲ p. 37

’frictional force’ and ’electrical conductivities’ formulae changed to

Ru =
ne

σ0

(0.51j‖ + j⊥); σ0 = ne2τe/me

This reflects the definition of Ru in the Braginskii formulation. Earlier
versions of the NRL plasma formulary referred to the variables σ‖ and
σ⊥ as ’conductivities’ or ’electrical conductivities’ in the definition of
the frictional force Ru. This has caused some confusion (brought to my
attention by several plasma physicists) and the above formula should
dispel any confusion.

⊲ p. 34

The expression for electron-ion collisons (b) in the cold electron limit
should be

λei = λie = 16− ln
(

n
1/2
i T

−3/2
i Z2µ

)

for Te < Ti(me/mi).

⊲ p. 35

The factor 35 in the expression for λii‘ has been changed to 43.
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We re-derive the Coulomb logarithm for counter-streaming ions in the presence of warm electrons and obtain
a different result than the one given in the NRL Plasma Formulary (2013 edition).

I. RE-DERIVATION OF THE COUNTER-STREAMING

ION-ION COULOMB LOGARITHM

The Coulomb logarithm for counter-streaming ions
with relative velocity vD = βDc in the presence of warm
electrons (kTi/mi, kTi′/mi′ < v2D < kTe/me) is given in
the NRL Plasma Formulary (2013 edition, top of p. 35)
as

λii′ = λi′i = 35− ln

[

ZZ ′(µ+ µ′)

µµ′β2
D

(

ne

Te

)1/2
]

, (1)

where Te is in eV and cgs units are used throughout,
consistent with the convention in the NRL Plasma For-
mulary. Unprimed and primed variables correspond to
test and field particles, respectively.
In some cases that are clearly weakly coupled, λii′ falls

below unity as calculated using Eq. (1). For example, for
counter-streaming Al-Al collisions with µ = µ′ = 27,
Z = Z ′ = 2.0, vD = 20 km/s, Te = 2.2 eV, and ne =
6.5× 1014 cm−3, λii = 0.325. This prompted us to check

Eq. (1) for accuracy.
The definition of the Coulomb logarithm is

λ = lnΛ = ln

(

rmax

rmin

)

, (2)

where in this case

rmax = λDe =

(

kTe

4πnee2

)1/2

= 7.43× 102
(

Te

ne

)1/2

[cm]

(3)
and

rmin = b =
ZZ ′e2

mii′v2D
[cm], (4)

where b the distance of closest approach between
two counter-streaming ions with reduced mass mii′ =
mimi′/(mi + mi′) and relative speed vD. Here, we as-
sume that b is greater than the de Broglie wavelength
~/mii′vD.
We re-write b by pulling out numerical constants:

b =
e2

mpc2
(µ+ µ′)ZZ ′

µµ′(vD/c)2
=

(4.8032× 10−10)2

(1.6726× 10−24)(2.9979× 1010)2
(µ+ µ′)ZZ ′

µµ′β2
D

= 1.5347× 10−16 (µ+ µ′)ZZ ′

µµ′β2
D

. (5)

Plugging Eqs. (3) and (5) into Eq. (2), we obtain

λii′ = lnΛ = ln





743(Te/ne)
1/2

1.5347× 10−16 (µ+µ′)ZZ′

µµ′β2

D



 = 43− ln

[

ZZ ′(µ+ µ′)

µµ′β2
D

(

ne

Te

)1/2
]

. (6)

The discrepancy between the numerical factors 43 [in
Eq. (6)] and 35 [in Eq. (1)] is exactly accounted for
if the constants k = 1.6022 × 10−12 erg/eV and e2 =
(4.8032×10−10)2 statcoul2 in Eq. (3) are ignored (thanks
to G. Swadling of Imperial College for pointing this out),
which would change the numerical factor of 743 to 0.282
in Eqs. (3) and (6). This seems like a plausible mistake

to make in the original derivation of Eq. (1).
Using the Al-Al parameters given earlier, we get b =

1.02× 10−8 cm, λDe = 4.32× 10−5 cm, and λii = lnΛ =
8.1, a more reasonable result for our weakly coupled
plasma.
In summary, we propose that Eq. (6) is the more cor-

rect expression for the Coulomb logarithm for counter-
streaming ions in the presence of warm electrons.



Coulomb Logarithm
NRL Formulary p. 34
J.D. Huba (04 April 2016)

λ = lnΛ = ln
rmax

rmin

(1)

rmin is defined as

rmin =
eαeβ
mαβū2

(2)

where

mαβ =
mαmβ

mα +mβ

and ū = vα − vβ

for α = i (ion) and β = e (electron) and from Justin Ball find that

mie = me and ū2 =
3kTi

mi

(3)

where k is the Boltzmann constant and assumed that Te < Ti(me/mi). Thus,

rmin =
Ze2

3kTi

mi

me

(4)

rmax is defined as

rmax =

(

4π
∑ nγe

2

γ

kTγ

)

−1/2

(5)

which we write as

rmax =

(

kTi

4πniZ2e2

)1/2

(6)

using (4) and (6) obtain

lnΛ = ln

(

kTi

4πniZ2e2

)1/2
3kTi

Ze2
me

mi

(7)

lnΛ = ln

(

3k3/2

2π1/2e3
me

mi

)

T
3/2
i

µZ2n
1/2
i

(8)



ln Λ = ln

(

3k3/2

2π1/2e3
me

mi

)

− ln





µZ2n
1/2
i

T
3/2
i



 (9)

calculate constant (first term above). first,

k = (1.38× 10−16)(1.16× 104) = 2.02× 10−18

where 1.16× 104 is a conversion to eV

e3 = (4.80× 10−10)3 = 1.11× 10−28

me

mi

= 5.46× 10−4

so we get

3k3/2

2π1/2e3
me

mi

= 8.41× 106

and so

ln

(

3k3/2

2π1/2e3
me

mi

)

= ln(8.41× 106) = 15.94 ≃ 16

so on p. 34 of NRL plasma formulary should have

λei = λie = 16− ln
(

n
1/2
i T

−3/2
i Z2µ

)

(10)

for Te < Ti(me/mi).
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eq 18.5 (p. 189)

τα/βs =
τ
α/β
l

(

1 + mα

mβ

)

µ
(1)

where

µ = µ(xβ), xβ =
ǫβ

Tβ

=
mβ

mα

ǫα

Tβ

, τ
α/β
l =

(

mα

2

)1/2 1

πe2αe
2
β

ǫ3/2α

λnβ

limiting cases for µ(x) (p. 177, eq 15.10)

µ(x) =











4x3/2

3(π)1/2
x << 1

1 x >> 1

1. fast case (xβ >> 1):

µ ≃ 1, τ
α/β
l ∼ m1/2

α ǫ3/2α

substitute into Eq. (1)

τα/βs ∝

m1/2
α

(

1 + mα

mβ

) =
1

m
1/2
α

(

1

mα

+
1

mβ

)

−1

(2)

να/β
s =

1

τ
α/β
s

∝ m1/2
α

(

1

mα

+
1

mβ

)

(3)

set mα = µ and mβ = µ′ and obtain

νµ/µ′

s ∝ m1/2
µ

(

1

mµ

+
1

m′

µ

)

(4)



2. slow case (xβ << 1):

µ(x) ≃ x3/2, τ
α/β
l ∼ m1/2

α

substitute into Eq. (1)

τα/βs ∝

(

mβ

mα

)

−3/2 m1/2
α

(

1 + mα

mβ

) =

(

mα

mβ

)1/2
mα

mβ

m1/2
α

(

1 + mα

mβ

) =
mα

m
1/2
β

1
(

1 +
mβ

mα

)

thus,

να/β
s =

1

τ
α/β
s

∝

m
1/2
β

mα

(

1 +
mβ

mα

)

and

νµ/µ′

s ∝

µ′1/2

µ

(

1 +
µ′

µ

)


